Coupled Effect of Expansion Ratio and Blade Loading on the Aerodynamics of a High-Pressure Gas Turbine
نویسندگان
چکیده
The need of a continuous improvement in gas turbine efficiency for propulsion and power generation, as well as the more demanding operating conditions and power control required to these machines, still ask for great efforts in the design and analysis of the high pressure section of the turbo-expander. To get detailed insights and improve the comprehension of the flow physics, a wide experimental campaign has been performed in the last ten years at Politecnico di Milano on the unsteady aerodynamics of a high-pressure turbine stage considering several operating conditions. This paper presents and discusses the experimental results obtained for the stage operating with different expansion ratios and rotor loading. The turbine stage under study is representative of a modern high-pressure turbine and can be operated in both subsonic and transonic conditions. The experimental tools applied for the current research represents the state of the art when unsteady investigations are foreseen. The detailed flow field, the blade–rows interaction and the overall performance are described and discussed; efforts have been devoted to the discussion of the various contribution to the overall stage efficiency. The direct effects of the expansion ratio, affecting the Reynolds and the Mach numbers, have been highlighted and quantified; similarly, the indirect effects, accounting for a change in the rotor loading, have been commented and quantified as well, thanks to a dedicated set of experiments where different rotor loadings at the same expansion ratio have been prescribed.
منابع مشابه
Performance improvement of a wind turbine blade using a developed inverse design method
The purpose of this study is to improve the aerodynamic performance of wind turbine blades, using the Ball-Spine inverse design method. The inverse design goal is to calculate a geometry corresponds to a given pressure distribution on its boundaries. By calculating the difference between the current and target pressure distributions, geometric boundaries are modified so that the pressure di...
متن کاملPerformance improvement of a wind turbine blade using a developed inverse design method
The purpose of this study is to improve the aerodynamic performance of wind turbine blades, using the Ball-Spine inverse design method. The inverse design goal is to calculate a geometry corresponds to a given pressure distribution on its boundaries. By calculating the difference between the current and target pressure distributions, geometric boundaries are modified so that the pressure di...
متن کاملOptimization of turbine blade cooling with the aim of overall turbine performance enhancement
In the current work, different methods for optimization of turbine blade internal cooling are investigated, to achieve higher cyclic efficiency and output power for a typical gas turbine. A simple two-dimensional model of C3X blade is simulated and validated with available experimental data. The optimization process is performed on this model with two different methods. The first method is ...
متن کاملOptimization of turbine blade cooling with the aim of overall turbine performance enhancement
In the current work, different methods for optimization of turbine blade internal cooling are investigated, to achieve higher cyclic efficiency and output power for a typical gas turbine. A simple two-dimensional model of C3X blade is simulated and validated with available experimental data. The optimization process is performed on this model with two different methods. The first method is ...
متن کاملSimulating Cooling Injection Effect of Trailing Edge of Gas Turbine Blade on Surface Mach Number Distribution of Blade
In this research, a gas turbine blade cascade was investigated. Flow analysis around the blade was conducted using RSM and RNG.K-ε turbulence modeling and it is simulated by Fluent software. The results were considered for the cases as Mach number loss at the trailing edge of blade caused by vortexes that were generated at the end of blade. Effect of cooling flow through the trailing edge on th...
متن کامل